Abstract

Biomass fuels are widely used as a renewable source for heat and power generation. Alkali metals in a biomass fuel have an significant impact on furnace safety as such metals lead to fouling and slagging in the furnace and corrosion of water pipes. This paper presents a technique for dynamic predicting Potassium (K) concentration in a biomass fuel based on spectroscopic analysis and different recurrent neural networks. A miniature spectrometer is employed to acquire the spectroscopic signals of K in different biomass fuels, including peanut shell, willow, corn cob, corn straw and wheat straw, and their blends. The spectroscopic features of K are extracted. The factors that influence the spectral intensity of K in the biomass fuels are investigated. A basic recurrent neural network (RNN), and its variants, i.e., long short-term memory neural network (LSTM-NN) and deep recurrent neural network (DRNN), are constructed using the spectroscopic signal of K from the spectrometer. The performances of the neural networks for the dynamic prediction of K concentration are compared and analysed theoretically and experimentally. It is found that the relative error in the K concentration prediction through the use of the DRNN model is within 6.34% whilst the LSTM-NN and RNN models give errors slightly greater than this.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.