Abstract

The online cooperative path planning problem is discussed for multi-quadrotor maneuvering in an unknown dynamic environment. Based on the related basic concepts, typical three-dimensional obstacle models, such as spherical and cubic, and their collision checking criteria are presented in this article. An improved rapidly exploring random tree (RRT) algorithm with goal bias and greed property is proposed based on the heuristic search strategy to overcome the shortcomings of the classical RRT algorithm. Not only are the kinematic constraints of the quadrotor established but the time and space coordination strategy matching with the improved RRT algorithm is also presented in this article. Furthermore, a novel online collision avoidance strategy according to the partial information of the surrounding environment is proposed. On the basis of the above work, a distributed online path planning strategy is proposed to obtain the feasible path for each quadrotor. Numerical simulation results show that the improved RRT algorithm has better search efficiency than the classical RRT algorithm. And the satisfactory path planning and path tracking results prove that the above model and related planning strategies are reasonable and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.