Abstract

In this work, we propose a control scheme for linear systems subject to pointwise in time state and input constraints that aims to minimize time-varying and a priori unknown cost functions. The proposed controller is based on online convex optimization and a reference governor. In particular, we apply online gradient descent to track the time-varying and a priori unknown optimal steady state of the system. Moreover, we use a λ-contractive set to enforce constraint satisfaction and a sufficient convergence rate of the closed-loop system to the optimal steady state. We prove that the proposed scheme is recursively feasible, ensures that the state and input constraints are satisfied at all times, and achieves a dynamic regret that is linearly bounded by the variation of the cost functions. The algorithm's performance and constraint satisfaction is illustrated by means of a simulation example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call