Abstract
Large networks of cameras have been increasingly employed to capture dynamic events for tasks such as surveillance and training. When using active cameras to capture events distributed throughout a large area, human control becomes impractical and unreliable. This has led to the development of automated approaches for online camera control. We introduce a new automated camera control approach that consists of a stochastic performance metric and a constrained optimization method . The metric quantifies the uncertainty in the state of multiple points on each target. It uses state-space methods with stochastic models of target dynamics and camera measurements. It can account for occlusions, accommodate requirements specific to the algorithms used to process the images, and incorporate other factors that can affect their results. The optimization explores the space of camera configurations over time under constraints associated with the cameras, the predicted target trajectories, and the image processing algorithms. The approach can be applied to conventional surveillance tasks (e.g., tracking or face recognition), as well as tasks employing more complex computer vision methods (e.g., markerless motion capture or 3D reconstruction).
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.