Abstract

BackgroundCompensations are commonly observed in patients with stroke when they engage in reaching without supervision; these behaviors may be detrimental to long-term functional improvement. Automatic detection and reduction of compensation cab help patients perform tasks correctly and promote better upper extremity recovery.ObjectiveOur first objective is to verify the feasibility of detecting compensation online using machine learning methods and pressure distribution data. Second objective was to investigate whether compensations of stroke survivors can be reduced by audiovisual or force feedback. The third objective was to compare the effectiveness of audiovisual and force feedback in reducing compensation.MethodsEight patients with stroke performed reaching tasks while pressure distribution data were recorded. Both the offline and online recognition accuracy were investigated to assess the feasibility of applying a support vector machine (SVM) based compensation detection system. During reduction of compensation, audiovisual feedback was delivered using virtual reality technology, and force feedback was delivered through a rehabilitation robot.ResultsGood classification performance was obtained in online compensation recognition, with an average F1-score of over 0.95. Based on accurate online detection, real-time feedback significantly decreased compensations of patients with stroke in comparison with no-feedback condition (p < 0.001). Meanwhile, the difference between audiovisual and force feedback was also significant (p < 0.001) and force feedback was more effective in reducing compensation in patients with stroke.ConclusionsAccurate online recognition validated the feasibility of monitoring compensations using machine learning algorithms and pressure distribution data. Reliable online detection also paved the way for reducing compensations by providing feedback to patients with stroke. Our findings suggested that real-time feedback could be an effective approach to reducing compensatory patterns and force feedback demonstrated a more enviable potential compared with audiovisual feedback.

Highlights

  • Compensations are commonly observed in patients with stroke when they engage in reaching without supervision; these behaviors may be detrimental to long-term functional improvement

  • The difference between audiovisual and force feedback was significant (p < 0.001) and force feedback was more effective in reducing compensation in patients with stroke

  • Accurate online recognition validated the feasibility of monitoring compensations using machine learning algorithms and pressure distribution data

Read more

Summary

Introduction

Compensations are commonly observed in patients with stroke when they engage in reaching without supervision; these behaviors may be detrimental to long-term functional improvement. Automatic detection and reduction of compensation cab help patients perform tasks correctly and promote better upper extremity recovery. Stroke is the leading cause of long-term disability in adults worldwide [1], and many poststroke patients suffer from varying degrees of upper extremity motor dysfunction [2]. Patients with stroke who commonly use compensatory strategies may form nonoptimal motion patterns, hindering long-term recovery of their impaired arms [8, 9]. Stroke patients perform many exercises without supervision, such as home therapy, which highlights the need to detect and reduce compensationin unsupervised rehabilitation [10]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.