Abstract
Clustering data streams is an emerging challenge with a wide range of applications in areas including Wireless Sensor Networks, the Internet of Things, finance and social media. In an evolving data stream, a clustering algorithm is desired to both (a) assign observations to clusters and (b) identify anomalies in real-time. Current state-of-the-art algorithms in the literature do not address feature (b) as they only consider the spatial proximity of data, which results in (1) poor clustering and (2) poor demonstration of the temporal evolution of data in noisy environments. In this paper, we propose an online clustering algorithm that considers the temporal proximity of observations as well as their spatial proximity to identify anomalies in real-time. It identifies the evolution of clusters in noisy streams, incrementally updates the model and calculates the minimum window length over the evolving data stream without jeopardizing performance. To the best of our knowledge, this is the first online clustering algorithm that identifies anomalies in real-time and discovers the temporal evolution of clusters. Our contributions are supported by synthetic as well as real-world data experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.