Abstract
Although full-duplex transmission can be helpful for enhancing wireless link capacity, it may require extra energy to overcome the residual self-interference. In this paper, we investigate the trade-off between energy consumption and delay in a multi-channel full-duplex wireless LAN (WLAN). The goal is to minimize the energy consumption while keeping the packet queues stable. With Lyapunov optimization, we develop an online scheme to achieve the goals with optimized channel assignment, transmission scheduling, and transmission mode selection. We prove the optimality of the proposed algorithm and derive upper bounds for the average queue length and energy consumption, which demonstrate the energy-delay trade-off. The proposed algorithm is validated with simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.