Abstract

In this research, we consider an online assortment optimization problem, where a decision-maker needs to sequentially offer assortments to users instantaneously upon their arrivals and users select products from offered assortments according to the contextual multinomial logit choice model. We propose a computationally efficient Lasso-RP-MNL algorithm for the online assortment optimization problem under the cardinality constraint in high-dimensional settings. The Lasso-RP-MNL algorithm combines the Lasso and random projection as dimension reduction techniques to alleviate the computational complexity and improve the learning and estimation accuracy under high-dimensional data with limited samples. For each arriving user, the Lasso-RP-MNL algorithm constructs an upper-confidence bound for each individual product's attraction parameter, based on which the optimistic assortment can be identified by solving a reformulated linear programming problem. We demonstrate that for the feature dimension $d$ and the sample size dimension $T$, the expected cumulative regret under the Lasso-RP-MNL algorithm is upper bounded by $\tilde{\mathcal{O}}(\sqrt{T}\log d)$ asymptotically, where $\tilde{\mathcal{O}}$ suppresses the logarithmic dependence on $T$. Furthermore, we show that even when available samples are extremely limited, the Lasso-RP-MNL algorithm continues to perform well with a regret upper bound of $\tilde{\mathcal{O}}( T^{\frac{2}{3}}\log d)$. Finally, through synthetic-data-based experiments and a high-dimensional XianYu assortment recommendation experiment, we show that the Lasso-RP-MNL algorithm is computationally efficient and outperforms other benchmarks in terms of the expected cumulative regret.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.