Abstract
Tinnitus is a widespread and serious clinical and social problem. Although oxidative injury has been suggested to be one of pathological mechanisms in auditory cortex, whether this mechanism could be applied to inferior colliculus remains unclear. In this study, we used an online electrochemical system (OECS) integrating in vivo microdialysis with selective electrochemical detector to continuously monitor the dynamics of ascorbate efflux, an index of oxidative injury, in inferior colliculus of living rats during sodium salicylate-induced tinnitus. We found that OECS with a carbon nanotubes (CNTs)-modified electrode as the detector selectively responses to ascorbate, which is free from the interference from sodium salicylate and MK-801 that were used to induce tinnitus animal model and investigate the N-methyl-d-aspartate (NMDA) receptor mediated excitotoxicity, respectively. With the OECS, we found that the extracellular ascorbate level in inferior colliculus significantly increases after salicylate administration and such increase was suppressed by immediate injection of NMDA receptor antagonist MK-801. In addition, we found that salicylate administration significantly increases the spontaneous and sound stimuli evoked neural activity in inferior colliculus and that the increases were inhibited by the injection of MK-801. These results suggest that oxidative injury may occur in inferior colliculus following salicylate-induced tinnitus, which is closely relevant to the NMDA-mediated neuronal excitotoxicity. This information is useful for understanding the neurochemical processes in inferior colliculus involved in tinnitus and its related brain diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.