Abstract

Incremental and online learning algorithms are more relevant in the data mining context because of the increasing necessity to process data streams. In this context, the target function may change over time, an inherent problem of online learning (known as concept drift). In order to handle concept drift regardless of the learning model, we propose new methods to monitor the performance metrics measured during the learning process, to trigger drift signals when a significant variation has been detected. To monitor this performance, we apply some probability inequalities that assume only independent, univariate and bounded random variables to obtain theoretical guarantees for the detection of such distributional changes. Some common restrictions for the online change detection as well as relevant types of change (abrupt and gradual) are considered. Two main approaches are proposed, the first one involves moving averages and is more suitable to detect abrupt changes. The second one follows a widespread intuitive idea to deal with gradual changes using weighted moving averages. The simplicity of the proposed methods, together with the computational efficiency make them very advantageous. We use a Naive Bayes classifier and a Perceptron to evaluate the performance of the methods over synthetic and real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.