Abstract

The context of this work is the exploration of unknown polygonal environments with obstacles. Both the outer boundary and the boundaries of obstacles are piecewise linear. The boundaries can be nonconvex. The exploration problem can be motivated by the following application. Imagine that a robot has to explore the interior of a collapsed building, which has crumbled due to an earthquake, to search for human survivors. It is clearly impossible to have a knowledge of the building's interior geometry prior to the exploration. Thus, the robot must be able to see, with its onboard vision sensors, all points in the building's interior while following its exploration path. In this way, no potential survivors will be missed by the exploring robot. The exploratory path must clearly reflect the topology of the free space, and, therefore, such exploratory paths can be used to guide future robot excursions (such as would arise in our example from a rescue operation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.