Abstract
Humans form concept of objects by classifying them into categories, and acquire language by simultaneously interacting with others. Thus, the meaning of a word can be learned by connecting a recognized word to its corresponding concept. We consider this ability important for robots to flexibly develop knowledge of language and concepts. In this paper, we propose an online algorithm for robots to acquire knowledge of natural language and learn object concepts. A robot learns the language model from word sequences, which are obtained by the segmentation of phoneme sequences provided by a user, by using unsupervised word segmentation each time it is provided with a new object. Moreover, the robot acquires object concepts using these word sequences as well as multimodal information obtained by observing objects. The crucial aspect of our model is the interdependence of words and concepts: there is a high probability that the same words will be uttered to describe objects in the same category. By taking this relationship into account, our proposed method enables robots to acquire a more accurate language model and object concepts online. Experimental results verify this.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Cognitive and Developmental Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.