Abstract

Background/purposeIntensity-modulated proton therapy (IMPT) is highly sensitive to anatomical variations which can cause inadequate target coverage during treatment. Available mitigation techniques include robust treatment planning and online-adaptive IMPT. This study compares a robust planning strategy to two online-adaptive IMPT strategies to determine the benefit of online adaptation. Materials/methodsWe derived the robustness settings and safety margins needed to yield adequate target coverage (V95%≥98%) for >90% of 11 patients in a prostate cancer cohort (88 repeat CTs). For each patient, we also adapted a non-robust prior plan using a simple restoration and a full adaptation method. The restoration uses energy-adaptation followed by a fast spot-intensity re-optimization. The full adaptation uses energy-adaptation followed by the addition of new spots and a range-robust spot-intensity optimization.Dose was prescribed as 55 Gy(RBE) to the low-dose target (lymph nodes and seminal vesicles) with a boost to 74 Gy(RBE) to the high-dose target (prostate). Daily patient set-up was simulated using implanted intra-prostatic markers. ResultsMargins of 4 and 8 mm around the high- and low-dose target regions, a 6 mm setup error and a 3% range error were found to obtain adequate target coverage for all repeat CTs of 10/11 patients (94.3% of all 88 repeat CTs).Both online-adaptive strategies yielded V95%≥98% and better OAR sparing in 11/11 patients. Median OAR improvements up to 11%-point and 16%-point were observed when moving from robust planning to respectively restoration and full adaption. ConclusionBoth full plan adaptation and simple dose restoration can increase OAR sparing besides better conforming to the target criteria compared to robust treatment planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.