Abstract

Based on network function virtualization (NFV) and software defined network (SDN), <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">network slicing</i> is proposed as a new paradigm for building service-customized 5G network. In each network slice, service-required virtual network functions (VNFs) can be flexibly deployed in an on-demand manner, which will support a variety of 5G use cases. However, due to the real-time network variations and diverse performance requirements among different 5G scenarios, online adaptive VNF deployment and migration are needed to dynamically accommodate to service-specific requirements. In this paper, we first propose a time-slot based 5G network slice model, which jointly includes both edge cloud servers and core cloud servers. Since VNF consolidation may cause severe performance degradation, we adopt a demand-supply model to quantify the VNF interference. To achieve our objective—maximizing the total reward of accepted requests (i.e., the total throughput minus the weighted total VNF migration cost), we propose an Online Lazy-migration Adaptive Interference-aware Algorithm (OLAIA) for real-time VNF deployment and cost-efficient VNF migration in a 5G network slice, where an Adaptive Interference-aware Algorithm (AIA) is proposed as OLAIA’s core function for placing a given set of requests’ VNFs with maximized total throughput. Through trace-driven evaluations on two typical 5G network slices, we demonstrate that OLAIA can efficiently handle the real-time network variations and the VNF interference when deploying VNFs for real-time arriving requests. In particular, OLAIA improves the total reward by 22.18% in the autonomous driving scenario and by 51.10% in the 4K/8K HD video scenario, as compared with other state-of-the-art solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call