Abstract

To develop an online plan adaptation algorithm for intensity modulated proton therapy (IMPT) based on fast Monte Carlo dose calculation and cone beam CT (CBCT) imaging.A cohort of ten head and neck cancer patients with an average of six CBCT scans were studied. To adapt the treatment plan to the new patient geometry, contours were propagated to the CBCTs with a vector field (VF) calculated with deformable image registration between the CT and the CBCTs. Within the adaptive planning algorithm, beamlets were shifted following the VF at their distal falloff and raytraced in the CBCT to adjust their energies, creating a geometrically adapted plan. Four geometric adaptation modes were studied: unconstrained geometric shifts (Free), isocenter shift (Iso), a range shifter (RS), or isocenter shift and range shifter (Iso-RS). After evaluation of the geometrical adaptation, the weights of a selected subset of beamlets were automatically tuned using MC-generated influence matrices to fulfill the original plan requirements. All beamlet calculations were done with a fast Monte Carlo running on a GPU (graphics processing unit).Geometrical adaptation alone only worked with small anatomy changes. The weight-tuned adaptation worked for every fraction, with the Free and Iso modes performing similarly and being superior than the two range shifters modes. The mean V95 and V107 were 99.4 ± 0.9 and 6.4% ± 4.7% in the Free mode with weight tuning. The calculation time per fraction was ~5 min, but further task parallelization could reduce it to ~1–2 min for delivery adaptation right after patient setup.An online adaptation algorithm was developed that significantly improved the treatment quality for inter-fractional geometry changes. Clinical implementation of the algorithm would allow delivery adaptation right before treatment and thus allow planning margin reductions for IMPT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.