Abstract

This study evaluated the effect of organic solvent concentration on the polymerization kinetics for a model dental adhesive resin containing a ternary photoinitiator system. A monomer blend based on the bis-GMA, TEGDMA, and HEMA was used as a model dental adhesive resin, which was polymerized using a binary system [camphorquinone (CQ) and ethyl 4-dimethylamine benzoate (EDAB)] and a ternary system [CQ, EDAB, and diphenyliodonium hexafluorphosphate (DPIHFP)]. Additionally, these blends had 0, 10, 20, 30, and 40 wt % ethanol added. Real-time Fourier transform infrared spectroscopy was used to investigate the polymerization reaction over photoactivation time. Data were plotted, and Hill's three-parameter nonlinear regression was performed for curve fitting. The addition of a solvent to the monomer blends decreased the polymerization kinetics, directly affecting the rate of polymerization, delaying vitrification, and attenuating the Trommsdorf effect. The introduction of DPIHFP displayed a strong increase in reaction kinetics, reducing the solvent inhibition effect. After 10 s of photoactivation, the binary system obtained in 0, 10, 20, 30, and 40% of ethanol, a degree of conversion of 44.6, 26.3, 13.4, 1.15, and 0.0%, respectively, whereas when a ternary system was used, the values were 54.6, 40.5, 27.4, 14.5, and 3.4%. An improvement was observed in the polymerization kinetics of a model dental adhesive resin when using a ternary photoinitiation system, making the material less sensitive to the residual presence of a solvent before photoactivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call