Abstract

We synthesized onion-like carbon-encapsulated Co, Ni, and Fe (Co–C, Ni–C, and Fe–C) magnetic nanoparticles with low cytotoxicity using pulsed plasma in a liquid. The pulsed plasma is induced by a low-voltage spark discharge submerged in a dielectric liquid. The face-centered cubic Co and Ni, and body-centered cubic Fe core nanoparticles showed good crystalline structures with an average size between 20 and 30nm were encapsulated in onion-like carbon coatings with a thickness of 2–10nm. Vibrating-sample magnetometer measurements revealed the ferromagnetic properties of as-synthesized samples at room temperature (Co–C=360Oe, Fe–C=380Oe, and Ni–C=211Oe). Raman-spectroscopy analysis found onion-like carbon shells composed of well-organized graphitic structures. Thermal gravimetric analysis showed a high stability of the as-synthesized samples under thermal treatment and oxidation. Cytotoxicity measurements showed higher cancer cell viability than samples synthesized by different methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.