Abstract

Material innovations are reviewed within the context of ongoing biomechanical developments that relate the critical contact angle of second-order angulation (theta c) to the overall resistance to sliding (RS). As a science in its embryonic stage of development, RS is partitioned into classical friction (FR), elastic binding (BI), and physical notching (NO). Both FR and BI are defined in terms of normal forces (N) and kinetic coefficients (mu k). The angulation at which NO occurs (theta z) is introduced as a second boundary condition to theta c. Given this scientific backdrop, material modifications are sought that reduce RS. Approaches include minimizing mu k or N within the context of FR and theta < theta c, as, for example, by surface modifications of arch wires and brackets or by engineering novel ligation materials. Stabilizing theta at theta approximately equal theta c should provide more efficient and effective sliding mechanics by developing innovative materials (eg, composites) in which stiffness (EI) varies without changing wire or bracket dimensions. Between the boundaries of theta c and theta z (ie, theta c < theta < theta z), BI may be reduced by decreasing EI or increasing interbracket distance (IBD), independent of whether a conventional or composite material is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call