Abstract

The supernova remnant (SNR) W51C interacts with the molecular clouds of the star-forming region W51B, making the W51 complex one of the most promising targets to study cosmic ray acceleration. Gamma-ray emission from this region was discovered by Fermi/LAT and H.E.S.S., although its location was compatible with the SNR shell, the molecular cloud (MC) and a pulsar wind nebula (PWN) candidate. The modeling of the spectral energy distribution presented by the Fermi/LAT collaboration suggests a hadronic emission mechanism. Furthermore indications of an enhanced flux of low energy cosmic rays in the interaction region between SNR and MC have been reported based on ionization measurements in the mm regime. MAGIC conducted deep observations of W51, yielding a detection of an extended emission with more than 11 standard deviations. We extend the spectrum from the highest Fermi/LAT energies to ∼5 TeV and find that it follows a single power law with an index of 2.58±0.07stat±0.22syst. We restrict the main part of the emission region to the zone where the SNR interacts with the molecular clouds. We also find a tail extending towards the PWN candidate CXO J192318.5+140305, possibly contributing up to 20% of the total flux. The broad band spectral energy distribution can be explained with a hadronic model that implies proton acceleration at least up to 50 TeV. This result, together with the morphology of the source, suggests that we observe ongoing acceleration of ions in the interaction zone between the SNR and the cloud.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.