Abstract

By means of a one-zone evolutionary model, we study the co-evolution of supermassive black holes and their host galaxies, as a function of the accretion radiative efficiency, dark matter content, and cosmological infall of gas. In particular, the radiation feedback is computed by using the self-regulated Bondi accretion. The models are characterized by strong oscillations when the galaxy is in the AGN state with a high accretion luminosity. We found that these one-zone models are able to reproduce two important phases of galaxy evolution, namely an obscured-cold phase when the bulk of star formation and black hole accretion occur, and the following quiescent hot phase in which accretion remains highly sub-Eddington. A Compton-thick phase is also found in almost all models, associated with the cold phase. An exploration of the parameter space reveals that the closest agreement with the present-day Magorrian relation is obtained, independently of the dark matter halo mass, for galaxies with a low-mass seed black hole, and the accretion radiative efficiency ~0.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call