Abstract
BackgroundThe eSVS® external venous nitinol mesh (Kips Bay Medical, Minneapolis, USA) was designed to improve long-term patency of coronary saphenous vein grafts (SVG) by preventing pressure-induced wall stress and reactive neo-intimal hyperplasia. We present one-year-patency rates of meshed SVGs assessed by coronary computed tomographic angiography (cCTA).Patients and MethodsData from consecutive patients receiving an eSVS® meshed coronary bypass SVG from 06/2010 to 06/2011 were prospectively collected and analysed post-hoc. Patient characteristics, coronary artery disease, SVG quality, surgery (including number of anastomoses and transit time flow-measurement: TTFM), postoperative course and graft patency by cCTA were recorded. Potential risk factors for meshed graft occlusion were evaluated.Results22 patients received an eSVS® mesh (18 isolated CABG, 4 combined with aortic valve replacement). Three patients died prior to the one-year follow-up and were excluded. All 19 surviving patients (mean age 70.4 ± 9.5 years, 3 female) completed a cCTA of all grafts at 12 ± 0.1 months after surgery including 21 meshed SVGs (33 distal anastomoses), 7 unmeshed SVGs (13 distal anastomoses) and 22 arterial grafts (30 distal anastomoses).Mesh application was safe with patent grafts (by intraoperative TTFM) and perioperative course uneventful in all patients. The average graft/anastomosis number per patient was 2.6 ± 0.5/3.7 ± 0.8. Patency was unrestricted in all arterial and unmeshed SVGs (cCTA). Meshed SVG patency was 85 % (n = 28/33) for distal anastomoses and 76 % (n = 16/21) among meshed SVGs. Four SVGs with single distal anastomosis to the right coronary were completely occluded. One sequential graft to the left coronary was occluded between proximal and first distal anastomosis (see Fig. 1). Patency was independent of target site, coronary run-off, SVG quality and sequential distal grafting. All patients were asymptomatic.ConclusionsThe overall one-year patency rate of eSVS® meshed SVGs/anastomoses was 76 %/85 %. Surgical implantation is safe independently of target site, run-off, vein quality and sequential distal anastomoses. However, graft patency of meshed veins (76 %) was inferior to non-meshed (100 %) or arterial grafts (100 %). Thus our mid-term data do not sustain the concept of improving vein graft patency by external reinforcing with the eSVS® mesh. Further long-term follow-up is warranted.
Highlights
The eSVS® external venous nitinol mesh (Kips Bay Medical, Minneapolis, USA) was designed to improve long-term patency of coronary saphenous vein grafts (SVG) by preventing pressure-induced wall stress and reactive neo-intimal hyperplasia
Our mid-term data do not sustain the concept of improving vein graft patency by external reinforcing with the eSVS® mesh
Intermediate- and long-term patency of SVGs is inferior to arterial grafts as to reactive intimal hyperplasia with luminal restriction and progressive atherosclerotic SVG disease with subsequent thrombotic graft occlusion [1, 2]
Summary
The eSVS® external venous nitinol mesh (Kips Bay Medical, Minneapolis, USA) was designed to improve long-term patency of coronary saphenous vein grafts (SVG) by preventing pressure-induced wall stress and reactive neo-intimal hyperplasia. We present one-year-patency rates of meshed SVGs assessed by coronary computed tomographic angiography (cCTA). The use of autologous saphenous vein grafts (SVG) for coronary artery bypass grafting (CABG) has been adopted all over the world. Intermediate- and long-term patency of SVGs is inferior to arterial grafts as to reactive intimal hyperplasia with luminal restriction and progressive atherosclerotic SVG disease with subsequent thrombotic graft occlusion [1, 2]. The eSVS® mesh (Kips Bay Medical, Inc., Minneapolis, USA) is a flexible extravascular nickel-titanium mesh designed to reinforce SVGs exposed to the higher arterial pressure in CABG [5].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.