Abstract
Biometric access control systems are becoming more commonplace in society. However, these systems are susceptible to replay attacks. During a replay attack, an attacker can capture packets of data that represents an individual's biometric. The attacker can then replay the data and gain unauthorized access into the system. Traditional password based systems have the ability to use a one-time password scheme. This allows for a unique password to authenticate an individual and it is then disposed. Any captured password will not be effective. Traditional biometric systems use a single feature extraction method to represent an individual, making captured data harder to change than a password. There are hashing techniques that can be used to transmute biometric data into a unique form, but techniques like this require some external dongle to work successfully. The proposed technique in this work can uniquely represent individuals with each access attempt. The amount of unique representations will be further increased by a genetic feature selection technique that uses a unique subset of biometric features. The features extracted are from an improved genetic-based extraction technique that performed well on periocular images. The results in this manuscript show that the improved extraction technique coupled with the feature selection technique has an improved identification performance compared with the traditional genetic based extraction approach. The features are also shown to be unique enough to determine a replay attack is occurring, compared with a more traditional feature extraction technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.