Abstract

In this work, we studied possibility to obtain bimetallic nanopowders by our modified solution combustion synthesis method using citric acid as a fuel. Stoichiometric amounts of metal nitrates with metal to metal ratios 1:1 and 1:2 and fuels with final oxidizer to fuel ratio of 1.75 were used as initial components to prepare aqueous solutions. The almost complete absence of metal oxide phases was confirmed by energy-dispersive X-ray spectroscopy. The X-ray diffraction analysis of obtained materials showed that all samples are pure bimetallic nanopowders with distorted cubic crystal structure of each metal. According to high resolution transmission electron microscopy the mean diameter of metallic particles are about 10 nm for all nanopowders. The calculated interplanar distances of crystals of metal particles as well as detailed scanning transmission electron microscopy studying showed uniform distribution of different metal spices into nanoparticles. Thus, we can conclude the nanopowders are bimetallic particles with co-integrated crystal structures of different metalic spices. We suppose, the possibility of solution combustion synthesis of bimetallic nanopowder in the air environment is due to a combination of type and amount of the fuels as well as technological conditions of the synthesis. These lead to rapid combustion process at low temperature. In addition, protective inert atmosphere appears above freshly synthesized metal nanopowders during thermal decompositions of the fuels that eventually prevent metal oxidation. Modified SCS method could be successfully used for one-step synthesis of complex oxide-oxide and metal-oxide core-shell nanostructures.
 For citation:
 Romanovskii V.I., Khort A.A., Podbolotov K.B., Sdobnyakov N.Y., Myasnichenko V.S., Sokolov D.N. One-step synthesis of polymetallic nanoparticles in air invironment. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 42-47

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.