Abstract

Highly CH3-functionalized mesoporous silica with nearly spherical morphology was synthesized under acidic conditions by co-condensation of two different silica precursors polymethylhydrosiloxane (PMHS) and tetraethoxysilane (TEOS) in the presence of triblock copolymer P123 as template. XRD, N2 adsorption–desorption, HRTEM, SEM and 29Si MAS NMR were used to identify its highly-ordered mesopore array structure, nearly spherical particle morphology and CH3 functionalization of the as-synthesized material. The resulting hydrophobic mesoporous silica possessed regular mesochannel arrays, indicating that the introduction of PMHS had little impact on the formation of an ordered mesostructure. Also, PMHS played an important role in morphology control and organic functionalization, ensuring nearly spherical particle morphology and high CH3 functionalization degree of the obtained mesoporous silica material. As compared with pristine mesoporous silica SBA-15, the hydrophobic mesoporous silica showed the higher adsorption performance when they were used as adsorbents to remove organic pollutant nonylphenol at a very low concentration from aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call