Abstract

This study put forward a one-step carbonization method by concentrated sulfuric acid to prepare garlic peel derived biochar, and the synthetic conditions were optimized by L16(45) orthogonal experiments. Notably, in order to study the differences between the proposed synthetic method and the conventional pyrolysis method, the concentrated sulfuric acid carbonized garlic peels biochar (CSGPB) was compared with pyrolysis derived garlic peel biochar (HTGPB) in characterization and adsorption capacities for Enrofloxacin (ENR). Results showed that CSGPB exhibited more graphite-like structures with more active functional groups on the surface, and the equilibrium adsorption capacity of CSGPB (142.3 mg g−1) was 13.7 times of HTGPB (10.4 mg g−1) under identical conditions. Moreover, the adsorption behaviors including adsorption kinetics, isotherms and thermodynamics of CSGPB for ENR were fully investigated and discussed. Based on the above experiments, density functional theory (DFT) simulations were performed to reveal the interfacial interaction and adsorption mechanism. Results showed π-π interaction between quinolone moieties of ENR and graphite-like structures in CSGPB might be the dominant mechanism. As for the functional groups, the adsorption energies were −40.46, −15.21 and −5.96 kJ mol−1 for –SO3H, –OH and –COOH, respectively, which indicated –SO3H was the most active functional groups on the surface of CSGPB. This study provided a new sustainable perspective for the design of efficient biochars, and explored the interfacial interaction mechanism of antibiotics removal on biochars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call