Abstract

MicroRNAs (miRNAs) play pivotal roles in gene regulation and their dysregulation is implicated in various diseases, including cancer. Current methods for miRNA analysis often involve complex procedures and high costs, limiting their clinical utility. Therefore, there is a critical need for the development of simpler and more cost-effective miRNA detection techniques to enable early disease diagnosis. In this study, we introduce a novel one-enzyme for miRNA one-step detection method using Taq DNA polymerase, termed OSMOS-qPCR. We optimized the PCR buffer, PCR program, Taq DNA Polymerase concentrations and reverse PCR primer concentrations, resulted in a wide linear range from 100 fM to 0.001 fM (R2 > 0.98 for each miRNA), the detection limit for OSMOS-qPCR was 0.0025 fM. Furthermore, OSMOS-qPCR demonstrates excellent specificity to differentiation of less than 0.1 % nonspecific signal. Finally, we demonstrated the robust amplification efficiency, enabling the detection of trace amounts of cell-free miRNA in serum samples, and the excellent discrimination ability between gastrointestinal cancers and control subjects (AUC value = 1.0) if combined two miRNAs. The development of OSMOS-qPCR offering a simpler, cost-effective, and efficient detection method, has the potential to be non-invasive strategy for early detection of gastrointestinal cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.