Abstract

A one-step process for the synthesis of hydrophilic carbon nanofibers (CNFs) through CO2 hydrogenation on NiNa/Al2O3 was developed for the loading and targeted delivery of the anticancer drug doxorubicin (DOX). CNFs that were synthesized on NiNa/Al2O3 for 9h at 500°C exhibited an adequate magnetic response and a large content of hydrophilic oxygen-containing functional groups on the carbon surface, resulting in excellent colloidal solution. The CNF material exhibited a highly efficient capacity for DOX adsorption, particularly at pH 9.0. The loading and release of DOX was strongly pH dependent, possibly due to electrostatic and π–π stacking interactions between DOX and CNF sample. The Langmuir isotherm and pseudo second-order kinetics of DOX-loaded CNFs were well-modeled for the process of DOX adsorption. DOX-loaded CNF targeted cancer cells more selectively and effectively than free DOX and exhibited a marked tendency to kill HeLa cancer cells and reduced toxicity to normal human primary fibroblast (HPF) cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.