Abstract

Few-layer graphene (FLG) was investigated as an electrically-conductive interleaf layer for one-step electroplating and patterning of metal on nonconductive polymer substrates without using multiple and toxic pretreatment processes in traditional electroplating. An individual FLG (5–10 nm of thickness with 6.4% of oxygen content) was obtained by expanding graphite with microwave followed by exfoliating the expanded graphite with sonication in N-methyl-pyrrolidone. Stacking FLG in the in-plane direction, a robust FLG film was obtained by the vacuum-assisted filtering and drying methods, and transferred to a polyethylene terephthalate (PET) substrate via an intermediate transfer to the water surface. The sheet resistance of the FLG film on the PET substrate was 0.9 kΩ/sq with a thickness of 80 nm and the root-mean-square roughness of 29 nm. In the electroplating of nickel on the FLG film, hemisphere-shape metal seeds appeared in the early stage of electroplating and they subsequently grew up to 200–480 nm, which became connected to form a continuous nickel layer. The thickness of the continuous nickel layer increased linearly with electroplating time. The developed electroplating method demonstrated its capability of selective patterning on nonconductive substrates using a simple masking technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.