Abstract

High-efficiency air filters are in high demand to protect human health from the threat of ultrafine particulate matters (PM). However, most commercial air filters are less effective for PM0.3 capture and/or still suffer from undesirable pressure drops. They are also typically petroleum-based. Herein, a double-jet synchronous electrospinning technology was demonstrated to fabricate spider-web-like polylactic acid (PLA) nanofibrous membranes (SPNM) in one step. The properties of spinning solutions were regulated to construct favorable multi-scale nanofiber and bead structures that mimicked the structural units in spider-webs. The as-prepared SPNM exhibited excellent filtration efficiency (99.87 %) and high quality factor (0.321 Pa−1) against the PM0.3, while presenting an attractively low pressure drop (19 Pa). Additionally, the filtration performance of SPNM was almost completely preserved during 10-cycle tests and the 6-month long-term tests, showing excellent function stability and durability. Benefiting from its good hydrophobicity (WCA = 143.2°), SPNM also presented a satisfactory filtration efficiency (>99.37 %) with low pressure drop (18 Pa) at an environment with humidity at 90 % against PM0.3. Furthermore, the unique structure increased the mechanical strength of SPNM, facilitating the processability for practical applications. Overall, this work may shed light on a promising approach for developing biomass-based, highly efficient filtration materials with hierarchical structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.