Abstract

In the electrofiltration process, membrane conductivity plays a decisive role in improving the antifouling performance of the membrane. In this paper, combining the preparation of graphene (Gr) with the fabrication of the Gr layer on the surface of a polyaniline (PANI) membrane, a graphene/PANI (Gr/PANI) conductive membrane was prepared creatively by the one-step electrochemical method. The properties of the as-prepared Gr/PANI membrane were studied systematically. By the tests of Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and atomic force microscopy, it was confirmed that Gr was successfully produced and was combined with the PANI membrane well. Field scanning electron microscopy with energy-dispersive X-ray analysis further confirmed that the top surface and the upper layer pore walls of the membrane were randomly covered by Gr. The antifouling performance of the prepared membrane was evaluated by studying the permeation flux of the yeast suspension, compared with the ones with no electric field: the total permeation flux at 1 V direct current (dc) increased by 109%; besides, under 1 V dc, the average flux of the Gr/PANI membrane was approximately 1.4 times that of the PANI membrane. This approach may provide a promising strategy for the combination of Gr with conductive polymers to produce separation membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.