Abstract

Sustainable production of gasoline-range hydrocarbon fuels from biomass is critical in evading the upgradation of combustion engine infrastructures. The present work focuses on the selective transformation of n-butanol to gasoline-range hydrocarbons free from aromatics in a single step. Conversion of n-butanol was carried out in a down-flow fixed-bed reactor with the capability to operate at high pressures using the HZSM-5 catalyst. The selective transformation of n-butanol was carried out for a wide range of temperatures (523-563 K), pressures (1-40 bar), and weight hourly space velocities (0.75-14.96 h-1) to obtain the optimum operating conditions for the maximum yields of gasoline range (C5-C12) hydrocarbons. A C5-C12 hydrocarbons selectivity of ∼80% was achieved, with ∼11% and 9% selectivity to C3-C4 paraffin and C3-C4 olefins, respectively, under optimum operating conditions of 543 K, 0.75 h-1, and 20 bar. The hydrocarbon (C5-C12) product mixture was free from aromatics and primarily olefinic in nature. The distribution of these C5-C12 hydrocarbons depends strongly on the reaction pressure, temperature, and WHSV. These olefins were further hydrogenated to paraffins using a Ni/SiO2 catalyst. The fuel properties and distillation characteristics of virgin and hydrogenated hydrocarbons were evaluated and compared with those of gasoline to understand their suitability as a transportation fuel in an unmodified combustion engine. The present work further delineates the catalyst stability study for a long time-on-stream (TOS) and extensive characterization of spent catalysts to understand the nature of catalyst deactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.