Abstract

One-step conversion of methane and formaldehyde into ethanol is a 100% atom-efficient process for carbon resources utilization and environment protection but still faces eminent challenges due to the lacking of efficient catalysts. Therefore, developing active and stable catalysts is crucial for the co-conversion of methane and formaldehyde. Herein, twelve kinds of “Single-Atom” - “Frustrated Lewis Pair” (SA-FLP) dual-active-site catalysts are designed for the direct conversion of methane and formaldehyde to ethanol based on density functional theory (DFT) calculations and microkinetic simulations. The results show that the SA-FLP dual active sites can simultaneously activate methane at the SA site and activate formaldehyde at the FLP site. Among the twelve designed SA-FLP catalysts, Fe1-FLP shows the best performance in the co-conversion of methane and formaldehyde to ethanol with the rate-determining barrier of 1.15 eV. Ethanol is proved as the main product with the turnover frequency of 1.32 × 10−4 s−1 at 573 K and 3 bar. This work provides a universal strategy to design dual active sites on metal oxide materials and offers new insights into the effective conversion of methane and formaldehyde to desired C2 chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.