Abstract

We report a general and versatile method for controlled synthesis of anisotropic gold nanostructures through the reduction of HAuCl4 by aniline in aqueous solution, without the need for an additional stabilizer or capping agent. In this approach, the reduction kinetics of AuCl-4 can be altered by simply adjusting the initial pH and temperature, inducing the formation of a wide variety of anisotropic nanostructures such as dispersed or multilayered plates, wires with networked or paramecium-like structures, and ginger-shaped particles. AFM, TEM, XRD, EDX, FTIR, and UV-vis-NIR measurements were used to characterize the resulting gold nanostructures. Investigation reveals that in situ formed polyaniline serves effectively as a capping agent to direct the shape of gold nanostructures during the slow growth process. These as-synthesized gold nanostructures exhibit strongly shape-dependent optical properties. This facile approach may be extended to the synthesis of some other anisotropic metal nanostructures such as platinum or palladium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call