Abstract

Silica nanoparticles are most commonly modified with amino-silanes, followed by post-modification activation for protein immobilization. In this work, epoxy-functionalized silica nanoparticles were prepared by modification with glycidyloxypropyl trimethoxysilane (GPTMS) for direct protein immobilization. Silica nanoparticles possessed an average size of 46 nm, but increased to 63 nm after GPTMS modification. Reaction time, reaction temperature and GPTMS content had no significant effect on particle size. Zeta potential of SiO2 changed from −26mV to +38mV after modification. Fourier-transformed infrared spectroscopy revealed alkyl C-H bending and stretching bands at 2944 cm−1, 1343 cm−1 and 1465 cm−1, respectively, for the modified nanoparticles. Fluorescein cadaverine was found to bind to GPTMS-modified SiO2, but not to bare SiO2, indicating the chemical reactivity of epoxy groups on the modified nanoparticle with amines. Finally, fluorescently labeled bovine serum albumin (BSA) was used as a model protein to investigate the capacity of epoxy-SiO2 nanoparticles for protein immobilization. The results showed that more proteins were immobilized on the particle with longer reaction time, higher NaCl concentration, lower pH, and less GPTMS content. More importantly, proteins bound to epoxy-SiO2 nanoparticle were highly stable. Under optimized reaction conditions, as much as 25 mg BSA/g nanoparticle was covalently attached to the nanoparticle. The epoxy silane modification of silica nanoparticles offers a reactive surface for one-step and high-density protein immobilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call