Abstract

Non-oscillatory schemes are widely used in numerical approximations of nonlinear conservation laws. The Nessyahu–Tadmor (NT) scheme is an example of a second order scheme that is both robust and simple. In this paper, we prove a new stability property of the NT scheme based on the standard minmod reconstruction in the case of a scalar strictly convex conservation law. This property is similar to the One-sided Lipschitz condition for first order schemes. Using this new stability, we derive the convergence of the NT scheme to the exact entropy solution without imposing any nonhomogeneous limitations on the method. We also derive an error estimate for monotone initial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.