Abstract
Understanding the relationship between the surface properties of a single plasmonic nanoparticle and its catalytic performance is critical for developing highly efficient nanocatalysts. In this study, a one-shot dual-detection-based single-molecule super-resolution imaging method in the evanescent field was developed to observe real-time spatiotemporal catalytic activity on a single plasmonic gold nanoparticle (AuNP) surface. The scattering intensity of AuNPs and the fluorescence of resorufin molecules produced on the AuNP surface were obtained simultaneously to investigate the relationship between nanoparticles and catalytic reactions at a single-molecule level. Chemisorbed adsorbates (i.e., catalytic product and resorufin) changed the electron density of individual AuNPs throughout the catalytic cycle, resulting in the fluctuation of the scattering intensity of individual AuNPs, which was attributed to the electron transfer between reactant resazurin molecules and AuNPs. The increase in the electron density of individual AuNPs affected the catalytic reaction rate. Furthermore, sequential mapping of individual catalytic events at the subdiffraction limit resolution was completed for real-time surface dynamics and spatiotemporal activity variations on the single AuNP surface. The developed method can aid in understanding surface-property-dependent catalytic kinetics and facilitate the development of nanoparticle-based heterogeneous catalysts at subdiffraction limit resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.