Abstract

Two types of TiO2 nanoparticles: i) fluorine-containing TiO2 (F-TiO2) and ii) fluorine-free TiO2 (H-TiO2) nanoparticles, were prepared through a simple, scalable wet-chemical synthesis process, and a comparative study of their photocatalytic properties was conducted. This facile process begins with a one-pot precipitation process at 90 °C, followed by heat treatment at 600 °C for 1 h in air, resulting in hierarchical, sphere-like, mesoporous structures composed of primary nanoparticles. The microstructural features and crystallographic structures of both types of nanoparticles were systematically investigated by X-ray diffraction, thermogravimetric/differential thermal analysis, X-ray photoelectron spectroscopy, N2 physical adsorption-desorption, field emission scanning electron microscopy, and transmission electron microscopy analyses. The photocatalytic activities were also evaluated by measuring the degradation of MB. The F-TiO2 nanoparticles showed enhanced photocatalytic activity compared to H-TiO2, which can be attributed to adsorbed fluorine on the surface which leads to various positive effects on the photocatalytic degradation reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call