Abstract

The bioderacemization of racemic phosphinothricin (D, L-PPT) is a promising route for the synthesis of l-phosphinothricin (L-PPT). However, the low activity and tolerance of wild-type enzymes restrict their industrial applications. Two stereocomplementary aminotransferases with high activity and substrate tolerance were identified in a metagenomic library, and a one-pot, two-stage artificial cascade biocatalytic system was developed to produce L-PPT through kinetic resolution and asymmetric amination. We observed that 500 mM D, L-PPT (100 g/L) could be converted into L-PPT with 94% final conversion and >99.9% enantiomeric excess (e.e.) within 24 h, with only 0.02 eq amino acceptor pyruvate and 1.2 eq amino donor l-aspartate required. The process could be scaled up to 10 L under sufficient oxygen and stirring. The superior catalytic performance of this system provides an eco-friendly and sustainable approach to the industrial deracemization of D, L-PPT to L-PPT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call