Abstract
Three-dimensional platinum nanochain network (Pt-3NCNW) nanostructures are synthesized through a thermal decomposition method using platinum(IV)-complexes as reaction precursors in the absence of surfactants and templates. The size, morphology and surface composition of Pt-3NCNWs are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). These spectral studies confirm the as-papered products are three-dimensionally interconnected network nanostructures with primary Pt nanochains as building blocks, and the Pt nanochains grow from the primary spheric Pt nanoparticles via oriented attachment. Compared to the commercial Pt black catalyst, the Pt-3NCNW nanostructures exhibit superior electrocatalytic activity and stability towards oxygen reduction reactions, which is ascribed to their unique properties such as the few surface defect sites and the low hydroxyl surface coverage on one-dimensional Pt nanochains, as well as fast O2 diffusion in three-dimensional structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.