Abstract

Abstract Commercialization of acetylene hydrochlorination using AuCl3 catalysts has been impeded by its poor stability. We have been studying that nitrogen-modified Au/NAC catalyst delivered a stable performance which can improve acetylene hydrochlorination activity and has resistance to catalytic deactivation. Here we show that nitrogen and sulfur co-doped activated carbon supported AuCl3 catalyst worked as efficient catalysts for the hydrochlorination of acetylene to vinyl chloride. Au/NSAC catalyst demonstrated high activity comparative to Au/AC catalyst. Furthermore, it also delivered stable performance within the selectivity of acetylene, reaching more than 99.5%, and there was only a 3.3% C2H2 conversion loss after running for 12 h under the reaction conditions of a temperature of 180 °C and a C2H2 hourly space velocity of 1480 h−1. The presence of the sulfur atoms may serve to immobilize/anchor the Au and also help prevent reduction and sintering of the Au and hence improve the catalytic activity and stability. The excellent catalytic performance of the Au/NSAC catalyst demonstrated its potential as an alternative to mercury chloride catalysts for acetylene hydrochlorination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call