Abstract

Magnetic zeolitic imidazolate framework 67/graphene oxide composites were synthesized by one-pot method at room temperature for the first time. Electrostatic interactions between positively charged metal ions and both negatively charged graphene oxide and Fe3 O4 nanoparticles were expected to chemically stabilize magnetic composites to generate homogeneous magnetic products. The additional amount of graphene oxide and stirring time of graphene oxide, Co2+ , and Fe3 O4 solution were investigated. The zeolitic imidazolate framework 67 and Fe3 O4 nanoparticles were uniformly attached on the surface of graphene oxide. The composites were applied to magnetic solid-phase extraction of five neonicotinoid insecticides in environmental water samples. The main experimental parameters such as amount of added magnetic composites, extraction pH, ionic strength, and desorption solvent were optimized to increase the capacity of adsorbing neonicotinoid insecticides. The results show limits of detection at signal-to-noise ratio of 3 were 0.06-1.0ng/mL under optimal conditions. All analytes exhibited good linearity with correlation coefficients of higher than 0.9915. The relative standard deviations for five neonicotinoid insecticides in environmental samples ranged from 1.8 to 16.5%, and good recoveries from 83.5 to 117.0% were obtained, indicating that magnetic zeolitic imidazolate framework 67/graphene oxide composites were feasible for analysis of trace analytes in environmental water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call