Abstract
A sustainable one-pot scheme for the synthesis of hierarchical porous carbons formed from biomass is developed herein. It is based on the carbonization of biomass-derived products (glucose, glucosamine, soya flour, and microalgae) in the presence of an activating agent (potassium oxalate) and calcium carbonate nanoparticles that form a hard template. During carbonization, double carbonates are formed in situ, which results in modifications in the morphology and size of the template nanoparticles, giving rise to a carbon material with an open macroporous foam-like structure rich in micro-/mesopores, the latter developing via a redox reaction between the carbon and potassium carbonate and also as a result of the reaction between the carbon and the evolved CO2. The porosity can be tailored by selecting an appropriate precursor. Thus, the carbon materials are basically micro-/macroporous in the case of glucose and glucosamine, and micro-/meso-/macroporous when soya flour and microalgae are used. A direct rela...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.