Abstract

A rapid and facile synthesis of resorcinol/formaldehyde cross-linked silica (RF/SiO2) aerogels was carried out in one pot based on an acid-catalyzed route, instead of the previously reported base-catalyzed ones. The gelation time was reduced to several hours at room temperature while it took several days even under heating conditions in the base-catalyzed ones. The interpenetrating network of RF/SiO2 aerogels showed similar porous structures with those of silica aerogels or RF aerogels. Their thermal conductivity was as low as that of the typical glass wool materials. The mechanical properties are characterized by dynamic mechanical analysis and compression testing. At room temperature, the results of compression testing show that the compressive Young’s modulus or ultimate failure strength of RF/SiO2 aerogel specimen is higher than that of native SiO2 aerogels with a similar density. The one-pot method improves the efficiency and reduces the cost of RF/SiO2 aerogels. The hierarchical porous carbon monoliths are also converted from carbonized RF/SiO2 aerogels by an additional HF treatment. Hence, they could be further explored as multifunctional candidate materials for thermal, mechanical, and electrochemical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call