Abstract

BiOX/TiO2 (X = Cl, Br, and I) hierarchical composites with superior photoelectrochemical performances were successfully synthesized by one-pot low-temperature solvothermal process without any structure-directing agents. The dual functions of adsorption coupled with photocatalysis based on BiOX/TiO2 were fully exhibited in terms of the quick degradation of colored and colorless organic pollutants (OPs). The as-prepared composites were characterized by field-emitting scanning electron microscope (FESEM), X-ray power diffraction (XRD) analysis, transmission electron microscope (TEM), N2 adsorption/desorption, UV–vis diffuse reflectance spectra (DRS), photoluminescence spectra (PL), photocurrent measurements (PC), and electrochemical impedance spectroscopy (EIS), respectively. As-prepared BiOX/TiO2 composites exhibited outstanding photoelectrochemical activities. Especially, the considerably enhanced adsorption and photocatalytic efficiencies were observed in the optimized BiOCl/TiO2 composites compared to their counterparts. The improvement of adsorption and photocatalytic performances should be ascribed to the presence of columbite TiO2-II in anatase, which would not only improve the ability of absorbing visible light and the charge separation efficiency, but also to effectively tailor the particle size, surface area and the exposed active facet of composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.