Abstract

Carboxylated cellulose nanocrystals (CCN) were prepared from bamboo pulp by ammonium persulfate (APS) with an ultrasonication-assisted technique. The effects of ultrasonication time, APS concentration, and reaction temperature on the yield of CCN were investigated. The morphology, structure, crystallinity, and thermal properties of prepared samples were analyzed by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The CCN presented rod-like shapes with diameter ranging from 10 to 30 nm and length of 50 to 200 nm. FTIR showed that CCN still kept with the basic chemical structure of cellulose, and at the 1735 cm-1 appearing the peak of C=O. The XRD pattern indicated that CCN was characteristic of the cellulose I crystal form, and the crystallinity of CCN was 63%. TGA revealed that CCN had a lower thermal stability than bamboo pulp. This research explored a low-cost and eco-friendly way to prepare CCN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call