Abstract

Metabolically engineered microbial consortia can contribute as a promising production platform for the supply of polyamide monomers. To date, the biosynthesis of long-chain α,ω-diamines from n-alkanes is challenging because of the inert nature of n-alkanes and the complexity of the overall synthesis pathway. We combined an engineered Yarrowia lipolytica module with Escherichia coli modules to obtain a mixed strain microbial consortium that could catalyze an efficient biotransformation of n-alkanes into corresponding α,ω-diamines. The engineered Y. lipolytica strain was constructed (YALI10) wherein the two genes responsible for β-oxidation and the five genes responsible for the overoxidation of fatty aldehydes were deleted. This newly constructed YALI10 strain expressing transaminase (TA) could produce 0.2 mM 1,12-dodecanediamine (40.1 mg/L) from 10 mM n-dodecane. The microbial consortia comprising engineered Y. lipolytica strains for the oxidation of n-alkanes (OM) and an E. coli amination module (AM) expressing an aldehyde reductase (AHR) and transaminase (TA) improved the production of 1,12-diamine up to 1.95 mM (391 mg/L) from 10 mM n-dodecane. Finally, combining the E. coli reduction module (RM) expressing a carboxylic acid reductase (CAR) and an sfp phosphopantetheinyl transferase with OM and AM further improved the production of 1,12-diamine by catalyzing the reduction of undesired 1,12-diacids into 1,12-diols, which further undergo amination to give 1,12-diamine as the target product. This newly constructed mixed strain consortium comprising three modules in one pot gave 4.1 mM (41%; 816 mg/L) 1,12-diaminododecane from 10 mM n-dodecane. The whole-cell consortia reported herein present an elegant "greener" alternative for the biosynthesis of various α,ω-diamines (C8, C10, C12, and C14) from corresponding n-alkanes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call