Abstract

Pion-mass-dependent nucleon-nucleon (NN) potentials are obtained in terms of the one-pion exchange and contact terms from the latest lattice QCD simulations of the two-nucleon system. They assume the forms of the leading order (LO) NN potential from the chiral effective field theory and thus are referred to as the LO chiral potential in this study. We extract the coefficients of contact terms and cut-off momenta in these potentials, for the first time, by fitting the phase shifts of and channels obtained from the HALQCD collaboration with various pion masses from 468.6 to 1170.9 MeV. The low-energy constants in the and channels become weaker and approach each other for larger pion masses. These LO chiral potentials are applied to symmetric nuclear and pure neutron matter within the Brueckner-Hartree-Fock method. Presently, however, we do not yet have the information of the P-wave NN interaction to be provided by the lattice QCD simulations for a complete description of nuclear matter. Our results enhance understanding of the development of nuclear structure and nuclear matter by controlling the contribution of the pionic effect and elucidate the role of chiral symmetry of the strong interaction in complex systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call