Abstract

ObjectiveCough and fever are the initial symptoms of lower respiratory infection. Severe cases might be fatal. Therefore, particularly in the non-equipped centers, the lack of diagnostic methods to identify the severe cases has resulted in overconsumption of antibiotics. On the basis of the knowledge about non-specific immune response at the site of injury, we developed a colorimetric dip-test that shows abrupt, sensitive and quite specific color change upon contact with sputum in the cases of lower respiratory infection. We further explored the mechanism of the test.ResultsWe detected deoxyribonucleic acid (DNA) and hepatocyte growth factor in the sputum of patients that suffered from respiratory infection (n = 18). The results differed significantly (P < 0.0001) from age-matched patients (n = 18) with other respiratory disorders and highly correlated with the index-test results (Spearman Rank test = 0.84). DNA with a concentration more than 0.03 mg/ml induced a visible and stable color change on index-test within 1 min. The test recognized all of the cases with respiratory infection and the specificity was 72%. With a high negative predictive value. The index test detects, inter alia, cell-free DNA in sputum and might safely rule-out respiratory infection in 2/3 of cases that present symptoms of acute respiratory infection.

Highlights

  • Lung damage can occur during a lower respiratory infection

  • We detected deoxyribonucleic acid (DNA) and hepatocyte growth factor in the sputum of patients that suffered from respiratory infection (n = 18)

  • The test recognized all of the cases with respiratory infection and the specificity was 72%

Read more

Summary

Introduction

Lung damage can occur during a lower respiratory infection. Diagnosis of diseases is crucial for decreasing the mortality rate [1]. The initial reaction of the innate immunity system at the site of injury—can be used for diagnostic purpose. As discovered recently among its task is to activate neutrophils to extrude their chromatin out of the cell in order to trap and kill bacteria [2]. These “neutrophil extracellular traps” (NETs) correlate strongly to the severity of respiratory infection [2]. NETs is composed of proteins and nucleic acid [2]. Coinciding with pneumonia are elevated levels of hepatocyte growth factor (HGF) [3, 4] which exhibits high affinity to sulfated glycan as reported previously [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.