Abstract

Lorentz violation emerged from a fundamental description of nature may impact, at low energies, the Maxwell sector, so that contributions from such new physics to the electromagnetic vertex would be induced. Particularly, nonbirefringent CPT-even effects from the electromagnetic sector modified by the Lorentz- and CPT-violating Standard Model Extension alter the structure of the free photon propagator. We calculate Lorentz-violating contributions to the electromagnetic vertex, at the one-loop level, by using a modified photon propagator carrying this sort of effects. We take the photon off shell, and find an expression that involves both isotropic and anisotropic effects of nonbirefringent violation of Lorentz invariance. Our analysis of the one-loop vertex function includes gauge invariance, transformation properties under C, P and T, and tree-level contributions from Lorentz-violating nonrenormalizable interactions. These elements add to previous studies of the one-loop contributions to the electromagnetic vertex in the context of Lorentz violation in the photon sector. Finally, we restrict our analysis to the isotropic case and derive a finite contribution from isotropic Lorentz violation to the anomalous magnetic moment of fermions that coincides with the result already reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call