Abstract

We estimated one-electron reduction potentials of redox-active organic molecules for a spectrum of eight different functional groups (phenoxyl, p-benzoquinone, phenylthiyl, p-benzodithiyl, carboxyl, benzoyloxyl, carbthiyl, and benzoylthiyl) in protic (water) and aprotic (acetonitrile, N,N-dimethylacetamide) solvents. Electron affinities (EA) were evaluated in a vacuum with high level quantum chemical methods using Gaussian3-MP2 (G3MP2) and Becke 3 Lee, Yang, and Parr functional B3LYP with aug-cc-pVTZ basis set. To evaluate one-electron redox potentials, gas-phase free energies were combined with solvation energies obtained in a two-step computational approach. First, atomic partial charges were determined in a vacuum by the quantum chemical method B3LYP/6-31G(d,p). Second, solvation energies were determined, solving the Poisson equation with these atomic partial charges. Redox potentials computed this way, compared to experimental data for the 21 considered organic compounds in different solvents, yielded overall root-mean-square deviations of 0.058 and 0.131 V using G3MP2 or B3LYP to compute electronic energies, respectively, while B3LYP/6-31G(d,p) was used to compute solvation energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call